F-2: REMOTEMATHS

DURATION OF EVENTS

Mathematical language: Hour, minute, seconds, analogue, digital, clock, morning, afternoon, o'clock, half past, noon, timer, watch.

TASK 1: YOUR DAY

Draw four events that happen as part of your usual day. Record the following

- The order of the events
- What time this even usually happens (e.g. morning, when I wake up, 7:30am, are suitable descriptions)
- How long does this event usually take to complete (e.g. 10 minutes, 1 hour)

Supporting task https://nrich.maths.org/6609

TASK 2: HOW LONG IS A MINUTE?

Read or listen to the story *One Minute* by Somin Ahn, you can listen at: https://bit.ly/39RB7OP Using a timer how many of these can you do in one minute?

How many blocks can you stack on top of each other?	
How many jumps can you do?	
How many times can you say your name?	
How many times can you pat your dog or cat?	
How many times can you stand up and then sit down?	
How many words in a book can you read?	

TASK 3: ORDER TIME

Order these from shortest duration to longest duration.

1 hour	60 seconds	1 day	1 week
1 minute	1 month	1 year	About 4 weeks

Find more tasks on page 2. © Mathematical Association of Victoria 2020

EDITION 1: DURATION OF EVENTS (CONT.)

TASK 4: PREDICTING TIME

Using the images below predict the following. You may record by drawing or writing your answers.

- What might have happened 1 minute before each of these photos were taken?
- What might have happened 1 minute after each of these photos were taken?
- What might have happened 1 hour before each of these photos were taken?
- What might have happened 1 hour after each of these photos were taken?

Images by Gundula Vogel (bubbles), Pezibear (guitar)and mokhtar akel (soccer), all from Pixabay.

MODEL AND REPRESENT NUMBERS

Mathematical language: Groups, higher, lower, more than, less than, next, before, tens, ones/units, hundreds, number line.

TASK 1: GROUPING NUMBERS (20-100) FOR EASY COUNTING

- Make a collection of 20 or 100 (e.g. blocks, cars, beads)
- How many ways can you arrange the collection for easy counting? For example, 1 line of 100, 10 groups of 10
- Take a photo of each way you have arranged your collection for easy counting.

TASK 2: MODELLING NUMBERS 20 OR 100

- Using blocks (e.g. wooden, plastic, lego) build a tower with exactly 20 blocks or 100 blocks.
- Take a photo or draw your creation
- Build another building with the same number of blocks
- What is the tallest tower you can build with 100 blocks?
- What is the widest tower you can build with 100 clocks?

TASK 3: NUMBER CHART ACTIVITIES

Have a go at these number chart activities:

- https://nrich.maths.org/5572
- https://www.abcya.com/games/one_hundred_number_chart_game

TASK 4: MAKING COLLECTIONS

- Either roll two dice or turn over two playing cards (e.g. 5 and 3) and use the two digits to make a two-digit number (e.g. 53). If you don't have either of these make up your own numbers
- Make a collection of your two-digit number using things in your home.
- Arrange the collection to make it easier for you or someone else to count.
- Draw a number line with 0 as the lowest number and 100 as the highest number, record where your twodigit number would sit.
- Create a new two-digit number and repeat the steps above.
- *Extending prompt:* create a three digit number

EDITION 1: MODEL AND REPRESENT NUMBERS (CONT.)

TASK 5: HIGHER/LOWER

Play with a partner. You'll need a pack of cards.

- Player 1 places 2 lots of two cards face down in front of the players. Player 1 turns over the first two cards e.g. 6 and 3. These two digits become the number 63.
- Before Player 2 turns over the next two cards, they must predict whether the next two-digit number will be higher than Player 1's or lower than Player 1's.
- If the guess is correct, Player 2 keeps all the cards. If the guess is incorrect, Player 1 keeps the cards.

MATHS APP OF THE WEEK: INFINITE VOYAGE

Infinite Voyage takes place on a spaceship that is searching for suitable places where humankind can relocate. To keep the spaceship running, there are a variety of challenges to complete.

Infinite Voyage uses gamification principles to increase confidence in and engagement with mathematics.

Google Play: https://play.google.com/store/apps/details?id=au.gov.vic. education.infinitevoyage&hl=en_AU iOS: https://apps.apple.com/au/app/infinite-voyage/id1385878311 Cost: Free

Look out for more tasks next week!

© Mathematical Association of Victoria 2020